Will the Global Village Fracture into Tribes: Recommender Systems and their Effects on Consumers

ثبت نشده
چکیده

Personalization is becoming ubiquitous on the World Wide Web. Such systems use statistical techniques to infer a customer’s preferences and recommend content best suited to him (e.g., “Customers who liked this also liked...”). A debate has emerged as to whether personalization has drawbacks. By making the web hyper-specific to our interests, does it fragment internet users, reducing shared experiences? We study whether personalization is in fact fragmenting the online population. Surprisingly, it does not appear to do so in our study. Personalization appears to be a tool for helping users widen their interests, which in turn creates commonality with others. This increase in commonality occurs for two reasons, which we term volume and taste effects. The volume effect is that consumers simply consume more after personalized recommendations, increasing the chance of having more items in common. The taste effect is that, conditional on volume, consumers buy a more similar mix of products after recommendations. “Will the global village fracture into tribes?” – P. Resnick

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Context-Aware Recommender Systems: A Review of the Structure Research

 Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...

متن کامل

An Effective Algorithm in a Recommender System Based on a Combination of Imperialist Competitive and Firey Algorithms

With the rapid expansion of the information on the Internet, recommender systems play an important role in terms of trade and research. Recommender systems try to guess the user's way of thinking, using the in-formation of user's behavior or similar users and their views, to discover and then propose a product which is the most appropriate and closest product of user's interest. In the past dec...

متن کامل

Improving Accuracy of Recommender Systems using Social Network Information and Longitudinal Data

The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of us...

متن کامل

Providing a model based on Recommender systems for hospital services (Case: Shariati Hospital of Tehran)

Background and objectives: In the increasingly competitive market of the healthcare industry, the organizations providing health care services are highly in need of systems that will enable them to meet their clients' needs in order to achieve a high degree of patient satisfaction. To this end, health managers need to identify the factors affecting patient satisfaction focus. T...

متن کامل

Modeling a Smart Hospital Information Architecture Based on Internet of Things and Recommender Agent

Introduction: Today, healthcare organizations worldwide are aware of the significance of technology and its impact on the quality of care. Hospitals are one of the most crucial systems in which the utilization of information is particularly important for several reasons. Using discrete-event simulation and developing a recommender agent, this study aimed to allocate IoT devices to patients in s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011